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Abstract

Machine Learning has been used to solve a variety of tasks when it comes to Neuroimaging: it can be used to predict the
onset of a disease or to classify subjects into healthy and control groups. Even though the models can make predictions with
high accuracy, they do not highlight any mechanisms on the basis of which predictions are made. The focus of this seminar
report is to explore the state of the art methodology designed to gain mechanistic interpretability of predictions from Machine
learning models trained for discriminating from MRI data. A combination of Generative-Discriminative approaches offer ways
to incorporate Neurologically important features for patient stratification: the feature extraction is done with the help of a
Generative model and classification is done using a Discriminative model. This approach can be implemented in a variety of
ways by either using classical Machine Learning or Deep Learning. One particular approach uses Generative embeddings that
encode prior knowledge from Neurobiology and then a classifier such as Support Vector Machines (SVMs). Another approach
uses Deep Belief Networks to learn latent representations of the imaging data and then feeds it to a classification layer (Softmax
in the case of Figure 3). Both methods achieve better performance as compared to traditional classification approaches which
are not preceded by a Generative Modeling step and elucidate how models can learn physiologically relevant representations

that can highlight the mechanism of a disease.

1. Introduction

In recent years, MRI (Magnetic Resonance Imaging) has become
the preferred modality for Neuroimaging studies due to its safety
and ability to create sophisticated 3-dimensional pictures of the
brain. In medical practice, it is often used as a tool to visually de-
tect differences between diseased and healthy subjects while testing
for Neurological disorders. However, the limitations of the human
eye and perceptual vision limit the precision with which medical
doctors can predict the presence and cause of a Neurological dis-
order in a subject. Machine Learning is a good starting point to
deal with such classification problems because of its ability to suc-
cessfully deal with images (example: Segmentation of medical im-
ages using 3D U-Nets [CAL*16]) and extract features from high
dimensional data. However, classification based on Machine Learn-
ing is often an artifact of the numerical properties of the data and
usually does not incorporate any prior knowledge about the bio-
logical process or consideration about system dynamics. In some
cases, traditional classification approaches (such as SVMs) were
able to achieve good diagnostic accuracy but their results do not
offer any insight into the mechanism of the disease under consider-
ation [KSC*08]. To address these challenges it is required to look
into the facets of the classification problem being studied.

The structure and task of the discriminative models differs based
on the imaging modality used. The two most widely used modal-
ities in Neuroimaging are structural MRI (sMRI) and functional

MRI (fMRI, section 2.1). The temporal component and compara-
tively lower resolution of fMRI is what distinguishes it from sMRI.
sMRI scans are used to classify subjects depending upon their
anatomical differences while fMRI scans are used to discriminate
on with help of variation in the activity of different subjects per-
forming the same task. It is important to get an overview of the dif-
ferent analysis techniques to understand their limitations and scope
with respect to interpretable predictions.

Analysis of fMRI images to detect abnormalities in brain func-
tion is seeing a paradigm shift from univariate to multivariate meth-
ods. The univariate methods (such as Statistical Parametric Map-
ping) study the statistical relationships between experimental vari-
ables and intensity values from each voxel individually [FHW *94].
However, they are unable to detect latent features from the data
such as inter-regional connection strengths and globally distributed
patterns of activity. Furthermore, this approach ignores the fact
that activities of individual voxels are not independent of each
other [KMD™*09]. To address the limitations of the univariate meth-
ods, multivariate ones incorporate information from an ensemble
of voxels and in this way encode connectivity information. Exam-
ples of multivariate classifiers that can be trained to classify from
fMRI scans are nearest-neighbors classifier, Fisher’s linear dis-
criminant, Gaussian Naive Bayes, and linear and nonlinear (radial-
basis-function kernel) SVMs. sMRI scans are usually treated as 3-
dimensional images and anatomical basis of a disease is analysed
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by taking into account differences in the specific Regions of Interest
(ROISs). Patients and healthy controls are assumed to have different
levels of activity in brain regions considered to have different func-
tionality. A set of promising algorithms that could extract features
from specific regions of interest are 3D CNNs [KAB*18]. Another
type of Neural Network model, the Deep Belief Networks (DBNs)
[Hin] can be used to extract statistically relevant information from
an ensemble of voxels represented in an sSMRI scan. [PHS* 14]

The remainder of this report is structured in the following man-
ner. First, the background section gives a brief introduction to the
techniques used to implement the pipelines illustrated in the meth-
ods section. This section gives an insight into the different pipelines
used for patient stratification based on fMRI and sMRI scans re-
spectively. Both pipelines incorporate a combination of Generative-
Discriminative learning but use different ways. Third, the results
from the two different approaches and their prospects. Finally, the
Discussion section illustrates individual opinion and analysis of
two different approaches. The concluding remarks highlight the ex-
tent to which the challenges stated have been overcome.

2. Background
2.1. Magnetic Resonance Imaging

MRI is a non-invasive imaging technology that produces 3-
dimensional detailed anatomical images [MMGPO6]. This tech-
nique is based on the Nuclear Magnetic Resonance Imaging prin-
ciple. It uses the difference between the magnetic properties of dif-
ferent tissue types presented with an external magnetic field to gen-
erate images.

There are two types of MRI scans: Structural (sSMRI) and func-
tional (fMRI). Structural MRI consists of 3-dimensional high res-
olution anatomical images of the brain and are often used to study
the locations of brain defects in patients. On the other hand, func-
tional MRI scans are 4-dimensional tensors with time as the fourth
dimension. They are often used for task-based Neuroscience exper-
iments designed to study differences of activity between groups of
subjects performing the task or tracking activity patterns through
the course of time.

2.2. Unsupervised Feature Learning with Generative
Modelling

Generative modelling usually refers to inferring the probability dis-
tribution underlying the given data and generating new samples
from it. It enables model inference by capturing the joint proba-
bility distribution P(X,Y) of the data X and the labels Y (Super-
vised learning) or only P(X) if the labels are absent (Unsupervised
learning). Some of the commonly used generative models for un-
supervised learning tasks are Gaussian Mixture models and Hid-
den Markov Models. Another set of models, such as DCM (section
2.2.1) and Restricted Boltzmann Machines (section 2.2.2) are prob-
ability based and relevant to unsupervised feature learning tasks.
They learn useful transformations of the original data which can
serve as preprocessing steps or help low dimensional exploration.

Unsupervised learning is important for MRI based studies be-
cause the raw data in the voxel space is high dimensional (about 1

million) and the individual voxels themselves are much less signif-
icant than a cluster of voxels for predictive tasks. In the following
subsections, two different approaches to achieve unsupervised fea-
ture learning have been highlighted. First one uses Dynamic Causal
Modelling to include prior knowledge from Neurobiology and the
second one uses Boltzmann state function to extract features with-
out any prior knowledge.

2.2.1. Dynamic Causal Models (DCMs)

DCM is a general framework for inferring processes and mech-
anisms at the neuronal level from measurements of brain activ-
ity [FHPO3]. These are often used with modalities such as fMRI
that have a specific time component. In this framework, each brain
region has an input, state and output. The activity of neural popu-
lations in each pre-specified brain region is represented by a single
state variable x and is perturbed by (known) experimental stimuli
u. Suppose a function f models the change of state of the neural
state vector x (state vector, reflecting the brain state by the ensem-
ble activity at a given time) dependent on internal parameters and
stimulus such that, f(0,0) = 0. The dynamics of the neuronal sys-
tem are modelled with the help of a non-linear function f such that
it can be approximated with the help of a Taylor series truncated
until second order differentials [SKH*08].
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The bilinear term describes the interactions between neuronal states
x and inputs u. Given m known (stimulus) inputs, one can param-
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(A,Bl7BZ7 B ,C) rate constants with the units of frequency. In
equation 2, the matrix A represents the fixed (context-independent
or endogenous) strength of connections between the modelled re-
gions, and the matrices B represent the changes of fixed connec-
tions induced by the i;;, input u; which adds on to changes of the
dynamic system. Finally, the C matrix represents the influence of
direct (exogenous) inputs to the system (e.g. sensory stimuli). In
this manner, the DCM helps to explain the dynamics of the brain
while taking into account internal parameters and changes induced
due to external stimuli.

The inversion of a DCM [BSL*11] gives the distribution of
p(8|X,m) where m = model (subject-specific with inter-regional
connection strength parameters), and X are the measurements from
an individual subject. From this distribution the parameters with
the Maximum a posterior probability (MAP) estimate gives an
approximation about the subject-specific inter-regional connection
strengths.

2.2.2. Restricted Boltzmann Machines and Deep Belief
Networks

An RBM(Restricted Boltzmann Machine) is a generative neural
network consisting of only two layers; a visible and a hidden layer.
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The two layers have symmetric connections and none within them.
The hidden units can be viewed as non-linear feature vectors detec-
tors aiming to model the dependencies of the inputs. [FI]

When RBMs are used for extracting features from MRI data, the
samples in the voxel space are fed into the visible units and are
mapped to the reduced feature space defined by the hidden layer. It
has been shown that RBMs can learn transformations that identify
networks and their temporal activations from fMRI data [HCS*14].

In general, the weights learned by the network determine the
transformation from the visible layer to the hidden layer. The joint
distribution learned by the model is given by p(v,h) = %e —E(v,h)
where v is the visible layer vector(input vector) and / is the hidden
layer vector, Z is the partition function and E is the energy of the
network given by
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W;;j is the weight between the hidden unit i and the visible unit j.
The b’s are the bias terms of the visible units and c’s are the bias
terms of the hidden units. M, N represent the number of visible and
hidden layer units respectively.

The minimization of the energy leads to maximisation of the
probability and the maximal probability distribution is what gives
us the best parameters describing the data The training of an RBM
consists of two steps:

e Gibbs Sampling: a hidden layer sample can be obtained based
on p(hlv) and visible layer sample p(v|h). This is known as
block Gibbs sampling. Considering the sigmoid as the activation
function the probabilities are given by
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Using these probabilities the log likelihood of the configuration
can be easily determined and maximised.
o Contrastive Divergence for approximating the log likelihood
gradient:
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The above formulation in equation 6 iteratively minimizes the
energy between the visible and the hidden layer. The Gibbs chain
is carried out with the help of a number of pre-specified steps
k and initialized with v(¥), The subsequent h s sampled from
p(h|v\")) and similarly vV from p(v|h")) where t = 1..k. With
the help of the gradient calculations the weight updates can be
carried out an optimised. The weight matrix learned after k itera-
tions becomes the transformation from the original feature space
to the reduced feature space.

An extension of RBM is a Deep Belief Network (DBN). It is
a neural network which consists of stacked RBM layers. This
stacking enables the algorithm to learn more complex and non-
linear transformations. Usually addition of layers increases the

performance and the non-linearity in the network. DBNs are
trained just like any other neural network with the help of back-
propagation [Hin].

2.3. Combination of Generative and Discriminative
approaches

It is well known that discriminative models aim to learn a mapping
from the input feature space to the labels and do not essentially fo-
cus on providing human interpretable decision rules. Even the per-
formance metrics of traditional classifiers do not provide an insight
into how the model reached its conclusion [Dav19]. The discrimi-
native models could also learn unimportant features that are just nu-
merically more represented and might not be mechanistically im-
portant. That is why a combination of Generative-Discriminative
learning is needed in order to stratify patients in a clinical setting.
In this type of learning, the Generative model serves as a sort of
pre-processing for the classification step. The induced feature space
is lower dimensional and more informative and this very property
enables interpretability of classification results. Such models, like
Conditional Variational Autoencoders (cVAEs) [YRYR19] have
been well implemented for handwritten images but their applica-
bility to the medical domain remains in its nascent stages [Dav19].

2.4. Embedding high dimensional feature space for
exploratory analysis

2.4.1. Generative kernels

In this section, we mention Generative kernels to introduce ideas
important to understand the methodology in section 3.1. Let us sup-
pose with given sample data X, the Generative model learns the
probability distribution P(X) having parameters 6 which belong
to a parametric family Mg (the set of all possible values that the
parameters can take). The Generative kernels implement functions
that define a similarity metric for observed examples. [BSL*11].
The main intuition is to derive the kernel functions from a gener-
ative probability model [JLH]. The Generative embeddings make
use of this kernels for classification. The kernel constructs a model
based feature space in which samples are represented by their sta-
tistical properties. In the above mentioned case, this helps the clas-
sifier to learn from the Neurobiologically important features (the 6
parameters) learned with the help of the DCM.

2.4.2. Constraint Satisfaction Problem with Divide and
Conquer

A non-linear embedding approach can be implemented with the
help of a Constraint Satisfaction Problem (CSP). This type of ap-
proach has been used in section 3.2 in order to visualise and in-
terpret the feature space learned by a Generative model. In gen-
eral, a CSP is one in which the solution is required to meet previ-
ously specified constraints (such as preservation of neighborhood
relations or distribution of the raw data). A DC (Divide and Con-
quer) algorithm can be used to solve CSPs [GEOS]. The DC strategy
breaks down the bigger problem (Constraints on the embedding of
the whole dataset) into smaller sub-problems, first solve the smaller
sub-problems and use it to get the solution to the bigger problem.

For the methodology proposed in 3.2 consider the d-dimensional
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Figure 1: The pipeline of Generative Embedding for Model-Based Classification of fMRI data. The detailed explanation of the pipeline is
given in section 3.1. At first, the BOLD (blood oxygen level dependent) activity of each subject is represented by an fMRI timeseries and then
the DCM (section 2.2.1) of the thalamo-temporal cortex is inverted to get the values of the parameters for each subject. For this particular
subject, the connections between the regions and A and B and the self connections of region B are more illustrative than others. The second
step is the kernel construction explained in section 2.4.1. The linear kernel is used to achieve linear separability in the higher dimensional
space and the features correspond to the coupling strengths between difference regions. The feature weights tell us which connections are
more important than others and in the case of this particular dataset the connections between A and B, A and C are more important than
other connections. Note: A,B,C in this figure correspond to brain regions and are different from A,B,C in section 2.2.1. Source: [BSL*11]

hidden node space. The embedding method wants to generate a
good mapping from d-dimensional to a desired low dimensional
space. For this, each point in the solution map (i.e. in the 2D map)
is taken to be a variable and has some associated constraints. Each
point gets a copy for each constraint (each variable has one con-
straint, one point gets copies along n constraints/dimensions where
n = number of points). The divide strategy moves the points in 2D
which are closer together (for each point, the algorithm determines
which of the replicas satisfy the constraints and then brings these
closer) while the conquer averages location of all replicas (nearest
neighbors).

3. Methods

Classification of medical images needs to be treated as a special
case of image classification since they are used to guide clinical
decisions. Traditional discriminative approaches give predictions
on the basis of a learned mapping from the input space to output
classes and do not always offer mechanistic interpretability. A com-
bination of Generative and Discriminative methods (section 2.3) is
required for building robust classifiers which make decisions on
the basis of latent characteristics of the data. Here, the Generative

model serves as a type of preprocessing or dimensionality reduc-
tion step that generates a comparatively Neurobiologically intuitive
feature space on the basis of which the classifier makes the deci-
sion [Dav19].

3.1. Classification of fMRI data using Generative embeddings

In the paper titled *Generative Embedding for Model-Based Clas-
sification of fMRI Data’ [BSL*11] Generative embeddings were
used to learn from an fMRI experiment of subjects performing
speech processsing tasks. The study incorporated data from n = 37
subjects, 26 healthy and 11 diagnosed with moderate aphasia. In
the first step of the pipeline given in Figure 1, the generative model
used is a DCM (section 2.2.1). It gives the change of the state vec-
tor of the Neuronal system (with respect to time) based on strength
of inter-regional connections. It is based on the assumption that the
brain is a dynamic system whose activity is a function of both exter-
nal stimulus and internal connections. The parameters of the DCM
(equation 1) give the coefficients between brain dynamics and in-
ternal states as well as brain dynamics and output stimulus. These
very coefficients remain unknown due to high network complexity
of the brain and need to be derived experimentally. In this case, a
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Region MNI coordinates

L.MGB left medial geniculate body
LHG left Heschl’s gyrus (A1)

LPT left planum temporale

—23 mm, —23 mm, —1 mm
—47 mm, —26 mm, 7 mm
—64 mm, —23 mm, 8 mm
R.MGB right medial geniculate body
RHG right Heschl’s gyrus (A1)
RPT right planum temporale

22 mm, =21 mm, —1 mm
48 mm, —24 mm, 6 mm

65 mm, —22 mm, 3 mm

Speech processing can be modelled using a dynamic causal model (DCM) with
6 regions. The table lists the central coordinates of these regions in MNI152
space. These coordinates define the centre of the rough anatomical masks
(16 mmx16 mmx16 mm) that guided the specification of the exact location
and extent of the regions of interest underlying model inversion (see Section
‘Implementation of generative embedding’). For an illustration of these masks,
see Figure S1 in the Supplementary Material.
doi:10.1371/journal.pcbi.1002079.t001

Figure 2: Regions of interest(ROIs) in the Thalamo-temporal cor-
tex which are essential to model speech processing tasks. The net-
work representation used for testing differences between apha-
sic patients and healthy controls is shown in figure 6 Source:
[BSL*11]

DCM for speech processing tasks balancing accuracy and model
complexity (section 6) was inverted in order to obtain strength of
inter-regional connections specific to one subject. This inversion
step mapped the data X to a multivariate probability distribution
p(B]x,m) in a parametric family Mg and from this distribution the
Maximum a posterior probability (MAP) estimate was taken . The
model inversion followed by the mapping Mg — R? is the Gener-
ative Embedding.

For the achieving the goals stated in the step above, DCM of
the thalomo-temporal cortex with 6 Regions of Interest(ROIs) were
used to measure differences between aphasic and non-aphasic sub-
jects in speech processing tasks. It is well known that such ROIs
are defined in order to gain exploratory direction, statistical control
or functional specification in fMRI analysis [Pol07]. The second
step involved generating a score space(with the help of a genera-
tive kernel) from a MAP estimateand then using simple linear ker-
nel [PC13] to compute pairwise dot products between subjects. It
can be seen from Figure 1 that in step 2, first the best parameters
for each subject were mapped to a d-dimensional space (defined by
the DCM where d is the number of connections in the model). The
mapping used is a function f : Mg — R that extracts Upap from
a subset of MAP estimates in the posterior distribution P(6|X,m).
Also, the d-dimensional space (called the generative score space)
encoded inter-neuronal synaptic connections and not activity in dif-
ferent brain regions. Once the generative score space had been cre-
ated then a linear kernel was used to compute dot products of the
statistical representations of each subject (the parameters of their
inverted DCMs). The linear kernel function can be represented us-
ing the equation RYxR? - R.

To summarise the second step: after representing one subject in
the score space a linear Kernel is used to compute scalar dot prod-
ucts between parameters (inter-regional connection strengths) of
each subject. The whole step can be viewed as generating a prob-
ability kernel Ky : MgxMg — R that gives a measure about the
similarity of parameters of two subjects when using a particular

DCM. In the third step, the dot products from the Generative kernel
were used to solve the optimisation problem of an SVM classifier
and find an optimally separating hyperplane [BB98]. Finally, in the
fourth step the constructed feature space was investigated to infer
about parameters that jointly give the most discriminative informa-
tion between healthy subjects and controls. The interpretation can
be done on the basis of numerical values of the feature weights.
A feature with a higher weight was expected to contribute more
numerically than lower weighted features. This was used to infer
the highly relevant inter-regional connection strengths for classifi-
cation.

3.2. Classification of sMRI data using Deep Belief Networks

fine-tuning feed-forward

LI

Figure 3: Training of a Deep Belief Network with 3 layers. The
DBN is treated as a consecutive stacking of RBMs. It can be seen
that the first RBM consists of the visible units receive data from
the voxel space and a hidden layer, which then serves as the visible
unti input for the second RBM and so on. For this particular study a
50-50-100 architecture was used i.e. 50 neurons in first and second
hidden layers with 100 neurons in the third hidden layer. The 100
dimensional-input patterns in learned feature space are then fed to
a classifier layer (softmax in figure) that makes a yes/no decision.
Source: [PHS* 14]

The pipeline illustrated in Figure 3 was used for two tasks. First,
to model the progression of Huntington disease on the basis of
sMRI scans. Second, to analyse the effect the depth of the DBN
effect on classification on a Schizophrenia sSMRI dataset.
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Depth Pre-training

Input 1 2
Dimension 60465 50 50
Unit type Gaussian Logistic Logistic
Dropout probability 0.2 0.5 0.5
Ly Regularization - 0.1 0.01
Learning rate - 0.01 0.01

Fine tuning
3 Input 1 2 3
100 60465 50 50 100
Logistic - Logistic Logistic Logistic
0.5 0.7 0.5 0.5 0.75
0.001 - 0.001 - -
0.001 - 0.01 0.1 1e-8

Figure 4: Parameter ranges used for pre-training and fine tuning in order to train the different depth DBNs in section 3.2.2. Source:

[PHS*14]

For both the tasks above, the training of the DBN was done in a
greedy manner by treating successive layers as RBMs. For combi-
nation with a classification approach, RBM training was divided in
two steps:pre-training, discriminative fine-tuning.

e Pre-training: The input from the previous layer or the raw data
(in case of layer 1) was fed to the visible layer of the RBM.

e Discriminative fine-tuning: The parameters from the pre-
training stage along with the raw data were fed to the network
in order to get the hidden-layer values. The hidden layer val-
ues were then fed to a classification layer. This step allowed the
training of the RBM as a feedforward neural network with back-
propagation of error. In this particular case, the soft-max layer
had access to only the binary labels: diseased and healthy.

Another important aspect of this implementation that helps to guide
interpretation of the classification is to incorporate a non-linear em-
bedding method to control what the model learns in each layer.
This was done with the help of a Constraint Satisfaction Frame-
work(section 2.4.2). The CSP is a method to inspect the data sam-
ples in the hidden layer feature space. A 2D representation of the
feature space in each layer is computed with the help of a divide
and conquer strategy such that it preserves neighborhood relations
and helps get an intuition about the network learning the correct
properties about relationships between the data samples being pre-
served after transformation. The DBN output was then visualised
with the help of the CSP that preserves neighborhood relationships
from the higher dimensional feature space (100 dimensional in the
case of the depth 3 model) in the 2-dimensional space.

3.2.1. Huntington Disease dataset

This dataset involved analysis of 3500 sMRI scans (2641 pa-
tients and 859 controls) from project PREDICT-HD (www.predict-
hd.net) [LPP15] where it was tested to guide knowledge discovery
about changes in cognitive skills when a patient transitions from
healthy to a diseased state. In this case, a three layer DBN was
trained in an unsupervised manner for feature learning and the ad-
ditional softmax layer was used for the classification task. The vis-
ible layer of the DBN received input from the voxel space (with a
pre-defined rule concerned with regions of interest) and the hidden
space is the learnt feature space.

Measure(n = | Searchlight PCA-based- Generative-

37) feature dimensionality | embedding(full-
selection reduction model)

Accuracy 0.730 0.865 0.973

Balanced 0.729 0.799 0.981

Accuracy

Significantly | p =.006 p<0.001 p<0.001

above

chance

Table 1: Results of classification with linear Kernel SVM from
the Generative embedding approach when compared to PCA-based
dimensionality reduction [WEGS87] and Searchlight feature reduc-
tion [KGB06]. A few of the results from the original paper have
been presented to illustrate the difference Generative embedding
makes as a pre-processing step to increase the balanced accuracy.
Source: Table 2 [BSL*11]

3.2.2. Schizophrenia dataset

The different variants(1, 2 and 3 layer DBNs) were used for classi-
fication on a dataset combined from four studies at John’s Hopkins
University(JHU) with 198 schizophrenia patients(both first episode
and chronic patients) and 191 matched healthy controls. To analyse
the effect of depth in the DBN, three different model architectures
were used. First, an RBM with 50 hidden units in the top layer.
Second, a DBN with depth 2 with 50 units in first layer and 50
in the top layer. Third, a DBN of depth 3 with 50,50-100 units in
first,second and top layers. The parameter ranges which were used
in order to evaluate the depth effect are put together in Figure 4.
Logistic regression, SVM and kNN classifiers used the DBNs as the
pre-processing step and the F-scores were recorded accordingly.

4. Results
4.1. Generative Embedding Approach

Using the DCM for speech processing Figure 6 the three most im-
portant connections that help to distinguish between patients and
controls are: R.PT to L.PT, L.HG to L.PT (both forward and back-
ward connections) and R.HG to L.HG (see Figure 4). They are
highlighted in bold red and have obtained with cross validation. The
directed synaptic connections are all terminating in the left hemi-
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M patients
M controls

(a) Visualisation of different subjects with the help of radial coordi-
nates. The axis along each radial coordinate is a parameter of the DCM
(representing inter-regional connection strengths) of the thalamo-temporal
cortex, the MAP estimates are plotted on the respective axis’. It can be seen
that there is not an obvious difference between aphasic (red) and healthy
controls(grey). This particular observation highlights the fact that presence
of aphasia can be attributed to a combination of the factors rather than any
particular factor independently. Source: [BSL*11]

¢ . controls
. low
m@d um

(b) Visualisation of subjects in 2D space using a CSP. Each point on the
map is an sSMRI volume which is transformed to 100 dimensional feature
space by the DBN, the data in the DBN space is then represented by an em-
bedding in 2D with the help of divide and conquer strategy (section 2.4.2).
Even though the network did not have any information about the severity of
the disease (the discriminative fine tuning had access to only binary labels,
see section 3.2), the decomposition by the CSP could generate a direction
corresponding to the disease severity and this signifies that the DBN learns
important features for classification. Source: [PHS* 14]

Figure 5: Results of Generative modelling from the two approaches

audltory stimuli

Figure 6: Results of DCM interpretation after training the clas-
sifier with the pipline in Figure I the discriminative connections
strengths inferred from the dataset have been highlighted in red.
The bold red connections are the ones which have significant dis-
criminative power repeatedly after cross-validation. The DCM has
6 regions of interests as mentioned in Figure 2, 15 inter-regional
connections, 6 self connections and two auditory stimulus, it has
been selected on the basis of it’s ability to balance accuracy and
complexity as compared to other models of the thalamo-temporal
cortex(Schofield et. al). Source: [BSL*11]

Depth Raw 1 2 3
SVM,F- 068 £|066 £ |062 +£]|09 =
score 0.01 0.09 0.12 0.14
LR,F-score 063 +£]065 +|061 +]|091 =+
0.09 0.11 0.12 0.14
KNN,F- 061 £]055 +£]|058 +£]|09 =+
score 0.11 0.15 0.16 0.16

Table 2: Results of classification using the DBN. The F-scores
from the different layer DBNs have been compared to the raw data.
The classification here has been done by using a SVM, LR or KNN
after the last hidden layer of the RBM.Source: [PHS* 14]

sphere and highlight transfer of information from right to left hemi-
sphere. This is in accordance with prior knowledge that language is
processed in the brain by the transfer of information from the right
to the left hemisphere [SMP*07]. The mechanistic interpretability
offered with this type of modelling is the fact that these discrimi-
natory connections illustrate that language is processed differently
between aphasic and non aphasic patients and it is the inter-regional
forward connections from the right to the left hemisphere which are
disrupted for those suffering from aphasia.

With the help of Figure 5(a) it can be seen that the model in-
duced generative score space gives an intuitive visualisation and
correspondence with the DCM. The ’connectional fingerprints’
[PSKO2] of fMRI scans illustrate that the difference between pa-
tients and controls might not be intuitive at the first glance but prob-
ably a combination of parameters could help visually see the dif-
ferences. Further, the Generative embedding enabled linear SVM
classifier to get a balanced accuracy of 98% with a p-value<0.01
which signifies that the results of this model are not random and
hold statistical significance. Also, in Table 4.1 it can be seen using
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the Generative embeddings as a pre-processing step has the highest
balanced accuracy which is a better performance metric than plain
accuracy because the dataset used was imbalanced, i.e. 26 controls
and 11 diseased.

4.2. DBN Approach
4.2.1. Huntington Dataset

As exhibited by Figure 5(b), the DBN extracts high level features
from the raw sMRI data which are visualised with the help of a
non-linear embedding approach. It can be seen that the healthy con-
trols and diseased subjects are well separated in the 2D embedding.
Even though the discriminative fine tuning phase did not have ac-
cess to the disease severity (color-coded by authors on the map)
the embedding from the DBN space still output directions corre-
sponding from low to high disease severity. Since the embedding
preserves neighborhood relationships from the hidden node space
of the DBN (100 dimensional top layer of the 3-layered network)
it can extrapolated that the 100 hidden node space is a statistically
relevant representation of the voxel space. From the 2D embedding
the subjects can also be grouped due to the spectral decomposition
(eigenvector obtained by solving the CSP), the extent’ of differ-
ence between any two subjects can be determined via their distance
on the 2D map. In a very ideal scenario, the SMRI scans can then
be used to detect spatial locations or ROIs (using techniques such
as segmentation) which are important for the distance of samples
in the embedding.

4.2.2. Schizophrenia Dataset

In all three cases represented by Figure 4.1 the DBN based classi-
fication showed an increase in the F-scores with the increase in the
number of layers. The increasing F-scores illustrate that the DBN
possibly learns useful transformations of the original spatial MRI
data. With the parameter settings in Figure 4 it can be seen that
Deep Learning can do automatic feature learning from even a large
number of features without encoding any prior knowledge about
the problem at hand. The statistical formulation of the Boltzmann
distribution is what helps the network to detect high non-linearity
in the data.

5. Discussion

The two methodologies (section 3) mentioned above combine
Generative-Discriminative models in different ways; first(section
3.1) using prior knowledge from Neurobiology and sec-
ond(section 3.2) without.

The first one gives good results in terms of balanced accuracy
and Neurobiological interpretability but the experiment was per-
formed only for 37 patients, a small dataset, the applicability of
this particular pipeline remains questionable. The most important
reason for the accuracy of this method remains that prior knowl-
edge from Neurobiology encoded in DCMs helps to see a collec-
tion of voxels performing activity and not one in isolation. Also, the
parameter learning remains unsupervised and it lies on the assump-
tions that inter-regional connection strengths are more important
for discrimination than isolated regions. The last interpretation step

in the pipeline 1 helps to see which connections are important and
characterise the patients of the disease.

The second methodology uses a Deep Learning approach to ex-
tract features from the raw data. This holds lots of promises when
the aim is to explore mechanisms of diseases about which no prior
knowledge is present. It also removes the subjectivity from the
model design (e.g. what type of information a particular research
group might want to encode). Also, adding more layers could also
help explore higher level complex features in the data which might
not have an exact correspondent in Neurobiology but can certainly
be spatially visualised with embeddings and weight matrices.

6. Conclusions

The two different methods offer good visualisations and help to
see the Neurobiologically important information from different as-
pects. In summary, the applicability of both of these methods needs
to be explored for different types of Neurological disorders affect-
ing different parts of the brain. It is important to note that even
though MRI images were used for the two different tasks men-
tioned in the methodology, the addition of time component makes
fMRI feature learning different from sMRI feature learning.

When it comes to comparing the two methods in terms of Neu-
robiologically interpretability, the Generative embeddings are use-
ful in cases when we already have some prior knowledge about the
Neurological disorder; for example which brain area is affected and
which connections to model. On the other hand, the DBN approach
is helpful in cases where no prior knowledge about the disorder is
known and latent features need to be learned in an unsupervised
manner. We can say that the Deep learning approach is "fully auto-
matic feature learning’ while the Generative embeddings are ’semi-
automatic feature learning’.

With results from Generative-Discriminative learning, one can
conclude that it certainly helps to encode information about the
brain as a system, an ensemble of voxels. It holds promises for
the field of Neuroimaging because of increased classification per-
formance and ability to enable statistical inference as compared
to traditional classifiers. From the results presented above, it can
be seen that the statistical inference from such models along with
problem-specific model design can certainly achieve mechanistic
interpretability about a disease.
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